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INTRODUCTION 

When pyrolyzed, coal forms a complex mixture of polycycl ic  aromatic compounds 
(PAC). many of which carry funct ional  groups a s  s u b s t i t u t e s  f o r  r ing hydrogen. 
Further subject ion of PAC t o  pyro ly t ic  condi t ions causes changes i n  t h e i r  composi- 
tion--manifested p a r t l y  by changes i n  the  degree of subs t i tu t ion .  The presence o r  
absence of subs t i tuent  groups i s  of importance t o  environmental i s sues  concerning 
both t h e  sources of environmental PAC and t h e i r  hea l th  e f fec ts .  Researchers 
(22.26.36.45) studying PAC i n  the  a i r .  water, and s o i l  have t r i e d  t o  deduce infor- 
mation about the  PAC source f u e l s  and t h e i r  process temperatures from r e l a t i v e  
abundance6 of c e r t a i n  a lkylated and unalkylated PAC. 

Focussing p a r t i c u l a r l y  on alkyl  and amino subs t i tuents .  several  researchers  
(14.18.30.31.32.54) have attempted t o  e s t a b l i s h  a l i n k  between biological  a c t i v i t y  
(i.~. , carcinogenici ty  o r  mutagenicity) and the  presence or absence of subs t i tuent  
groups. Resul ts  t o  da te  ind ica te  tha t  b io logica l  a c t i v i t y  i s  a complex funct ion of  
t h e  ident i ty  of the  parent PAC, t h e  na ture  of the funct ional  group. t h e  s i z e  of t h e  
funct ional  group (18.32). and the  posi t ion of t h e  subs t i tu t ion  (2.3.21.33.34.47)-- 
a l l  fac tors  t h a t  inf luence t h e  electron d i s t r i b u t i o n  within the  compound. It  is 
logica l  t h a t  these  f a c t o r s  should a l s o  be t h e  ones t h a t  govern PAC r e a c t i v i t y  under 
pyro ly t ic  condi t ions,  but a thorough inves t iga t ion  of a l l  of these  inf luences lies 
beyond I t  is our object ive t o  determine how the  de- 
gree of s u b s t i t u t i o n  and t h e  nature  of the  subs t i tuent  groups inf luence t h e  pyrol- 
y s i s  behavior of coal-derived PAC. 

t h e  scope of any s i n g l e  work. 

Previous work has  a l ready revealed some information about pyrolysis-induced 
changes i n  s u b s t i t u t i o n  of PAC from coal pyrolysis .  Ser io  (46) has used nuc lear  
magnetic resonance spectroscopy (NMR) t o  show t h a t  increasing pyrolysis  sever i ty  by 
e i t h e r  temperature o r  time e f f e c t s  an increase i n  aromatici ty  and a decrease in  t h e  
presence of func t iona l  groups. Employing Fourier  transform inf ra red  spectroscopy 
(FT-IR). Solomon, &. (50) and Freihaut and Seery (13) report  t h a t  high temper- 
a t u r e  coa l  t a r  e x h i b i t s  a considerable reduction (as  compared t o  lower temperature 
t a r )  of I R  absorpt ion i n  the  regions associated with funct ional  group attachment t o  
aromatic r ings.  Other researcher6 (5.25.53) have used gas chromatography-mass 
spectrometry (GC-MS) t o  ident i fy  some s p e c i f i c  a lkylated PAC produced i n  coal py- 
ro lys i s  experiments. We are unaware of any work t o  d a t e  t h a t  repor t s  t o t a l  mass 
y i e l d s  of s u b s t i t u t e d  and unsubst i tuted PAC from coal  pyrolysis .  

EXPERIKENTAL EQUIPMEhT AM) PROCEDURES 

To produce t h e  PAC of t h i s  study, 44-53 f i  p a r t i c l e s  of PSOC 997. a Pi t t sburgh  
Seam high v o l a t i l e  bituminous coal, a r e  f lu id ized  i n  argon and fed a t  a r a t e  of 2.5 
g/hour i n t o  t h e  laminar flov. drop-tube pyrolysis  furnace of Figure 1. Detai ls  of 
t h e  furnace appear elsewhere (41). An o p t i c a l  pyrometer is used t o  measure furnace 
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temperature, which can be s e t  t o  values  of 1000 K t o  2000 K by of t h e  
e l e c t r i c a l  power input .  P a r t i c l e  res idence t i m e .  or ”drop distance.” is cont ro l led  
by adjust ing the  v e r t i c a l  pos i t ion  of t h e  watercooled  co l lec t ion  probe. As pyrol- 
y s i s  products e x i t  the  react ion zone a t  5.3 s t d  l/min. they encounter 17.1 s t d  
l/min of argon quench gas a t  the  top of t h e  c o l l e c t i o n  probe and another  4.8 s t d  
l/min through the wal ls  of t h e  probe inner  tube as they t r a v e l  the length of t h e  
co l lec t ion  probe. Leaving t h e  probe, they e n t e r  an impactor f o r  s ize-separat ion of 
the s o l i d  pyrolysis  products. Char p a r t i c l e s .  the  l a r g e r  of these,  deposi t  on t h e  
f i r s t  s tages:  aerosols  (i.~.. PAC-coated soot )  end up on the  lowest impactor 
s tages  and the  Mil l ipore t e f l o n  f i l t e r  (hole s i z e ,  . 2  following the  impactor. 
After  passing through the f i l t e r ,  t h e  gases a r e  channeled t o  inf ra red  de tec tors  f o r  
measurement of CO and C02 and t o  a flame ioniza t ion  de tec tor  f o r  measurement of 
hydrocarbon v o l a t i l e s .  A small por t ion  of gas i s  diver ted t o  a 750 m l  g lass  bulb 
f o r  subsequent GC-MS analysis .  

adjustment 

After a l l  products a r e  weighed, t h e  aerosols  a r e  placed i n  teflon-capped. 
30-1 amber g lass  b o t t l e s  of Caledon d is t i l l ed- in-g lass  HPLC grade dichloromethane 
(DCM) and sonicated f o r  f i v e  minutes. Syringe-fulls of the  p a r t i c l e / l i q u i d  suspen- 
sion a r e  passed through a Mil l ipore t e f l o n  f i l t e r  (hole s i z e  . 2 ~ )  t o  remove t h e  
soot p a r t i c l e s  from t h e  PAC/DCM solut ion.  The mass of the  residue soot  i s  taken 
and subracted from t h a t  before sonicat ion t o  give t h e  mass of t h e  PAC. T r i p l i c a t e  
l O O - p l  a l iquots  of t h e  PAC/DCM solu t ion  a r e  removed, evaporated, and weighed 
according t o  the  procedure of Lafleur. a. (27) t o  v e r i f y  the  PAC y ie lds .  This 
l a t t e r  procedure g ives  2 90% recovery f o r  naphthalene and 100% recovery f o r  spec ies  
of 2 three r ings,  so negl ig ib le  PAC mass i s  l o s t  during evaporation s ince,  i n  our 
experiments. one-ring aromatics and l i g h t e r  hydrocarbons s t a y  i n  the  gas phase; 
only aromatics of 2 two r ings condense onto t h e  soot .  

The PAC/DCH solu t ions  undergo ana lys i s  by GC-MS. HPLC. and FT-IR. The GC com- 
ponent of t h e  GC-MS system is a Hewlett-Packard Model 5890. equipped wi th  a Quadrex 
Super Cap Series .  methyl s i l i c o n e  (f i lm thickness  .10 )xi?) high temperature, alumi- 
num clad capi l la ry  column (15 m x .2  mm i.d.1. Sam le  volumes of .1yl a r e  in t ro-  
duced i n t o  t h e  s p l i t l e s s  in jec tor ,  maintained a t  300 C. The de tec tor  i s  kept  a t  
32OoC. and the  column temperature i s  programmed from 4OoC t o  32OoC a t  10°C/min. 
The mass spectrometer, Hewlett-Packard Model 5970. operates  i n  e lec t ron  impact mode 
a t  an ionizing vol tage of 70 eV. Mass spec t ra  a r e  taken a t  a frequency of .77 
scanslsecond. over a mass t o  charge r a t i o  range of 41 t o  600. 

The HPLC system, f u l l y  described elsewhere (28). c o n s i s t s  of a Perkin-Elmer 
Series  4 quaternary solvent  de l ivery  system coupled t o  a Model LC-85B var iab le  
wavelength u l t r a v i o l e t  (W) detector .  1.5 ml/min of DCH (same grade as  above) 
flows through t h e  s t e r i c  exclusion column (50 cm long x 10 mm i.d.1. which is 
packed with 500 f i  Jordi-Gel poly(diviny1benzene). Samples a r e  in jec ted  through 
e i t h e r  a 6-pl o r  a l O O - p l  Rheodyne in jec t ion  loop, and a microswitch on the  injec-  
t o r  ac tua tes  t h e  da ta  system t o  insure reproducible s t a r t i n g  times. As 
demonstrated i n  another publ ica t ion  ( 2 8 ) .  subs t i tu ted  PAC e l u t e  i n  t h e  f i r s t  23.9 
m l ;  The proport ions of t h e  W response a reas  before and 
a f t e r  23.9 m l  a r e  taken t o  represent  respect ively t h e  proportions of subs t i tu ted  
and unsubst i tuted PAC. (To a l l e v i a t e  uncertainty about t h e  r e l a t i v e  W response 
fac tors  f o r  t h e  two c lasses  of PAC. w e  have co l lec ted  the  e l u a t e s  before  and a f t e r  
23.9 ml f o r  one sample. concentrated them under nitrogen, and subjected them t o  t h e  
microbalance weighing procedure (27) mentioned above. Because the  W a r e a  technique 
gives good agreement with the  weighing procedure, t h i s  l a t t e r ,  more time-consuming 
procedure is unnecessary.) 

unsubst i tuted.  afterward. 
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For FT-IR analysis .  drops of t h e  PAC/DCM so lu t ions  are placed on KBr d i s c s  (20 
mm x 2 mm). and t h e  solvent  is allowed t o  evaporate. The d iscs  a r e  placed i n  an IBM 
Model IR/32 Fourier  Transform Infrared Spectrometer, equipped with a Globar source 
and a mercury-cadmium t e l l u r i d e  detector .  3 e  r e s u l t i n g  absorbance spec t ra  repre- 
sen t  64 scans. taken a t  a resolut ion of 8 cm . To insure t h a t  t h e  PAC composition 
i s  uniform over t h e  surface of t h e  disc. each d i s c  i s  rotated s l i g h t l y  two times 
f o r  addi t iona l  determinations. 

RESULTS AND DISCUSSION 

Figure 2 d isp lays  t h e  y ie lds  of soot and PAC col lec ted  on the  aerosol  f i l t e r  
f o r  the two s e t s  of experiments: S e t  1. constant drop d is tance  (6 in)  and var iab le  
temperature. and Se t  2. constant  temperature (1375 K) and var iab le  drop dis tance.  
Firs t .  i t  should be noted t h a t  our maximum PAC yie ld  of -9% l i e s  s ign i f icant ly  
below t h e  24-26% primary t a r  y i e l d s  obtained from experiments conducted under l e s s  
severe condi t ions (7.46). Our m a x i m u m  PAC y i e l d  or "zero point" thus corresponds 
t o  a s i g n i f i c a n t  degree of primary ta r  conversion (-65%). Evident from Figure 2 
are the drop i n  PAC y i e l d  and the  compensating r i s e  i n  soot  y ie ld  as pyrolysis  con- 
d i t ions  increase i n  severity--by an increase i n  e i t h e r  temperature or distance.  
The 19.86% 
- + 1.09% f o r  Set 2 )  supports  the  previously reported not ion t h a t  PAC serve as pre- 
cursors t o  soot  (9.17.24.42.521. I t  should be borne i n  mind, however, t h a t  our 
experiments and ones done pr ior  t o  them (41) a l s o  show small temperature- and 
time-induced decreases i n  the y i e l d s  of char, C02. and hydrocarbons and an increase 
i n  t h a t  of GO. 

To b e t t e r  understand t h i s  apparent transformation of PAC t o  soot. i t  i s  neces- 
sary t o  i n v e s t i g a t e  t h e  compositional changes i n  t h e  PAC t h a t  accompany t h e i r  
conversion. We have chosen t o  descr ibe compositional changes of t h e  PAC i n  t e r n s  
of t h e i r  aromatic r i n g  number d i s t r i b u t i o n  and t h e i r  degree of funct ional  group 
subs t i tu t ion .  A discussion of changes i n  t h e  r ing  number d i s t r i b u t i o n s  of 
coal-derived PAC w i l l  appear elsewhere (55); t h i s  paper focusses on 
pyrolysis-induced changes i n  the degree of subs t i tu t ion .  

constancy of t h e  sum of PAC and soot  y i e l d s  (21.34% 2 0.97% f o r  Set 1; 

The quest ion of how the degree of s u b s t i t u t i o n  changes can be p a r t i a l l y  
answered by the  GC-MS t o t a l  ion chromatograms i n  Figure 3. fea tur ing  PAC from three  
Set 1 experiments. Since PAC e l u t e  in  the  order  of decreasing v o l a t i l i t y  or of 
increasing molecular weight, addi t ion of a funct ional  group br ings about a small 
increase i n  re ten t ion  time; addi t ion of an aromatic r ing,  a la rge  increase. 
Readily apparent from Figure 3 i s  the  loss of compositional complexity a s  tempera- 
ture  i s  raised.  The lowest temperature sample is comprised of a multitude of 
peeks. many unresolved. which correspond t o  unsubst i tuted PAC and t h e i r  subs t i tu ted  
homologs. )As temperature increases. the  number of peaks diminishes d r a s t i c a l l y .  
Large gaps emerge between c l u s t e r s  of unsubst i tuted PAC isomers--indicating a 
marked deplet ion i n  t h e  subs t i tu ted  species .  

Even though GC-MS can e a s i l y  give a q u a l i t a t i v e  p ic ture  of s u b s t i t u t i o n a l  
differences i n  PAC from coal. it i s  extremely d i f f i c u l t  t o  use GC-MS quant i ta t ive ly  
due t o  t h e  unreso lvabi l i ty  of some peaks. the  uncertainty of response fac tors .  t h e  
limited number of species  included i n  ava i lab le  mass spec t ra  l i b r a r i e s ,  and t h e  
v i r t u a l  i n d i s t i n g u i s h a b i l i t y  of mass spec t ra  of some isomeric PAC ( a t  l e a s t  f o r  
mas8 spec t ra  from systems with e lec t ron  impact ion iza t ion  sources (6.19.23)). Even 
i f  a l l  of these  d i f f i c u l t i e s  a re  surmounted. the  usefulness  of GC-MS s t i l l  extends 
only t h e  por t ion  of the PAC sample t h a t  is  gas chromatographable. i.~.. t o  t h e  t o  
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vaporizable components. ( I t  should be noted tha t  t h i s  vaporizat ion l imi ta t ion  of  
GC-MS systems promises t o  soon be eliminated by t h e  introduct ion of new supercr i t i -  
c a l  f l u i d  chromatography-MS systems (351.) 

Unlike GC. HPLC i s  l imited i n  a p p l i c a b i l i t y  only by component s o l u b i l i t y  i n  
t h e  mobile phase: but ,  except f o r  microcolumn HPLC techniques (43). t h e  p r i c e  f o r  
t h e  wider range of component a p p l i c a b i l i t y  is the  l o s s  of separat ion e f f ic iency  as 
evident i n  peak resolut ion.  This "drawback" can be an advantage i n  analyzing m i x -  
tu res  as complex as f o s s i l  fue l  products, however, because HPLC methods can be 
t a i l o r e d  t o  make bulk separat ions according t o  one or two s t r u c t u r a l  parameters. 
We have recent ly  developed a method with a s t e r i c  exclusion HPLC column t h a t  takes  
advantage of a nonexclusion e f f e c t  t o  separate  subs t i tu ted  from unsubst i tuted PAC 
(28). Non-nitrogen-containing PAC with alkyl .  phenyl, hydroxyl, carbonyl, car- 
boxyl, e ther ic .  e s t e r i c ,  cyano. or n i t r o  funct ional  groups e l u t e  as size-excluded 
species. Unsubstituted PAC a r e  adsorbed onto the  column and e l u t e  l a t e r  (28). 
Nitrogen-containing PAC a r e  a l s o  delayed by adsorption unless  they have a subs t i -  
tuent  group t h a t  s t e r i c a l l y  blocks t h e  N atom from the  adsorption s i t e  ( 2 9 ) .  

Figure 4 presents  the  r e s u l t s  of applying t h i s  technique t o  t h e  PAC from t h e  
two s e t s  of experiments. Yields of subs t i tu ted  PAC f a l l  monotonically with e i t h e r  
increasing temperature or drop dis tance.  Over the  temperature in te rva l  inves t iga t -  
ed i n  Set 1. the  drop is  by two orders  of magnitude: over the dis tance i n t e r v a l  i n  
Set  2. the  drop is by almost an order  of magnitude. Yields of unsubst i tuted PAC, 
on the  o ther  hand, exhibi t  a dual behavior. They appear t o  be insens i t ive  t o  pyrol- 
y s i s  conditions a t  temperatures 5 1312 K f o r  Set 1 and a t  dis tances  5 4 inches f o r  
Set 2. Beyond these " c r i t i c a l  values," however, they too decay with an increase  i n  
e i t h e r  temperature or distance.  Again t h e  decl ine i s  more dramatic f o r  t h e  experi- 
ments in  Set 1. 

The q u a l i t a t i v e  s i m i l a r i t y  of the  curves i n  Figure 4a t o  those i n  4b suggests  
t h a t  the  data of the two s e t s  of experiments be compared as  p l o t s  versus a parame- 
ter  of pyrolysis  severity--such as  t o t a l  PAC yield--that accounts f o r  both 
temperature and t i m e  e f f e c t s .  The r e s u l t  of combining Figures 2 and 4 appears i n  
Figure 5. which contains  data  from Sets  1 and 2 a s  wel l  as experiments conducted at  
combinations of temperature and d is tance  not covered by these  Sets. 

The f a c t  t h a t  a l l  t h e  data  ( t o  a f i r s t  approximation) l i e  on the  same l i n e s  
suggests the following f o r  the  ranges of temperature (1125 t o  1473 K) and time (ap- 
proximately .OS0 t o  .325 sec p a r t i c l e  residence times, corresponding t o  drop 
dis tances  of 2 t o  6 i n )  invest igated:  

1) The s p l i t  between subs t i tu ted  and unsubst i tuted PAC i s  so le ly  a func- 
t i o n  of PAC y i e l d  (or conversion) and depends on temperature or time 
only a s  much as  these var iab les  a f f e c t  PAC yie ld  (or  conversion). 

2)  Since pyrolysis  a t  long time and low temperature can give the  same 
r e s u l t s  as a t  shor t  time and high temperature. the  PAC conversion reac- 
t ions  have a narrow d i s t r i b u t i o n  of ac t iva t ion  energies .  

3) I t  is more p r a c t i c a l  t o  r e l a t e  subs t i tu ted  and unsubst i tuted PAC y i e l d s  
to t o t a l  y ie ld  than t o  temperature and residence t i m e ,  quant i t ies  whose 
measurements tend t o  be more system- and method-dependent. 

It is  convenient t o  approximate the  S ( subs t i tu ted  PAC) and t h e  U (unsubsti- 
tuted PAC) curves i n  Figure 5 as  two l i n e  segments of d i f f e r e n t  slope, i n t e r s e c t i n g  
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a t  a c r i t i c a l  PAC y i e l d  Y the  point  a f t e r  which there  is  n e t  loss of unsuhst i tut-  
ed PAC. The va lue  of Y 'is 4.5 mass% of coal--corresponding t o  48% PAC conversion 
i f  the  point  of m a x i m u m  SAC y ie ld  i s  taken as 0% conversion. Since both S and U 
must be 0 a t  Y = 0. t h e  equations f o r  the  l i n e s  can he obtained e a s i l y  i n  terms of 
Y. the  t o t a l  PAC y ie ld :  

Regime 1: Y&Y.lpc u = u  S = Y - u  

Regime 2: Y&YLO u = (UO/YC)Y s = (1- U0/Yc)Y 

Thus f o r  these  experiments. once the  c r i t i c a l  yield Y and t h e  i n i t i a l  y i e l d  of 
unsubst i tuted PAC U have been experimentally d e t e m g e d .  the  y ie lds  of subs t i tu ted  
and unsubst i tuted P8C can be calculated s o l e l y  from measurement of Y. The equa- 
t ions  imply a r a t i o  of S t o  U that .  in  Regime l. decreases with decreasing Y and, 
i n  Regime 2.  s t a y s  constant. The d a t a  match these approximations much b e t t e r  a t  
l a rge  Y than a t  amall Y, however, because t h e  r e l a t i v e  e r r o r  of the  s t r a i g h t  l i n e  
approximations f o r  S and U becomes grea te r  a s  Y decreases. Since secondary pyro- 
l y t i c  reac t ions  depend much l e s s  on the parent  coa l  than do the primary pyro ly t ic  
react ions.  one might expect PAC from other  coals  (especial ly  other  bituminous 
coals)  t o  exhib i t  t h e  same "two l i n e "  behavior of U and S y i e l d s  ( a l b e i t  with d i f -  
fe ren t  values  of Yc and U o ) .  

The t r a n s i t i o n  from Regime 1 t o  Regime 2 in  Figure 5 suggests a change i n  t h e  
nature  of t h e  func t iona l  groups associated with the  subs t i tu ted  PAC. Figure 6 d is -  
plays the  FT-IR spec t ra  of samples from t h r e e  Set 1 experiments--each labeled wi th  
the funct ional  groups conventionally assigned (4.48) t o  peaks a t  p a r t i c u l a r  bands. 
These spec t ra  appear unretouched. i . ~ . ,  t h e i r  basel ines  have not been "corrected" 
t o  screen out t h e  d r i f t  a l legedly due t o  scattfr (44.49.51). The pzyminent func- 
t i o n a l  group absorbances-pccur a t  2850-2980 cm and 1370-1460 c m  f o r  a l k y l  
groups; a t  3150-3550 cm f o r  OH or  t e NH of amides or amines; a t  1260-1280 cm 
f o r  e t h e r i c  C-0; and a t  1690-1730 cm-' f o r  carbonyl groups. The t h r e e  oxygen- 
containing groups--hydroxyl, e ther ,  and carbonyl--are the  same as those reportedly 
found i n  coa ls  of 2 80% carbon (1). 

Socrates  (48) caut ions against  comparing changes i n  r e l a t i v e  i n t e n s i t i e s  of 
funct ional  groups' bands t o  get changes i n  t h e i r  r e l a t i v e  amounts because s i g n a l s  
associated with p a r t i c u l a r  funct ional  groups can be augmented (and sometimes s h i f t -  
ed) by c e r t a i n  adjacent  atoms or  funct ional  groups (=.&.. t h e  in tens i ty  of t h e  C-H 
aromatic s t r e t c h  hand a t  1600 cm-' can be enhanced by e i t h e r  r ing ni t rogen or 
hydroxyl groups (51)): Nevertheless, we can make some q u a l i t a t i v e  observat ions 
from the spec t ra  i n  Figure 6 respon- 
s i b l e  f o r  t h e  3150-3550 cm-I band i n  Figure 6a disappear by 1312 K ( 6 4  and remain 
absent from t h e  spec t ra  of sam l e s  produced a t  higher  temperatures. This ohserva- 
t i o n  is  cons is ten t  with t h e  'H NMR determination of a temperature-induced drop i n  
hydroxyl content of the  bituminous coa l  t a r s  of Collin. e t  1. ( 8 ) .  If. as  recom- 
mended (50). a q m a t i c  H is represented by t h e  700-900 *band and a l i p h a t i c ,  by 
the  2800-3000 cm band, then Figure 6 a l s o  reveals  a reduction i n  a l i p h a t i c  (or 
hydroaromatic) hydrogen r e l a t i v e  t o  aromatic hydrogen--a reduction cons is ten t  w i t h  
the  r e s u l t s  of Solomon. &. (50) f o r  t a r s  of another Pi t tsburgh Seam bituminous 
coal .  Figure 6 a l s o  implies a r e l a t i v e  decrease i n  e ther ic  f u n c t i o n a l i t i e s  and a 
r e l a t i v e  increase  i n  carbonyl f u n c t i o n a l i t i e s  as  temperature increases .  PAC t h u s  
appear t o  adhere t o  the  following order  of reac t iv i ty :  

Most no t iceable  i s  t h a t  the  OH or NH groups 

hydroxyl- and/or amino-substituted PAC > alkyl-  and ether-subst i tuted PAC > 
unsubst i tuted PAC and PAC with carbonyl groups. 
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It i s  i n s t r u c t i v e  t o  compare t h i s  experimentally observed order  of r e a c t i v i -  
ties According t o  t h i s  
theory (11). the  bonding between two reac tan ts  par t ic ipa t ing  i n  any of a number of 
kinds of react ions (e.g.. concerted, f r e e  radical .  ionic)  occurs by overlap of t h e  
highest energy occupied molecular o r b i t a l  (HMO) of one species  with t h e  lowest 
energy unoccupied o r b i t a l  (LUMO) of t h e  other .  Reactions a r e  most e n e r g e t i c a l l y  
favored f o r  high HOMO energies and low LUMO energies. I f  the reac tan t  providing 
the LUMO i s  f ixed,  then the  r e a c t i v i t i e s  of compounds reac t ing  with t h i s  spec ies  
w i l l  follow the  order of t h e  compounds' HOMO energies. Except f o r  a minus s ign .  
ionizat ion poten t ia l s  a r e  "roughly t h e  energies  of the  HOMOs" (11). so lower ion i -  
zat ion poten t ia l s  denote higher  energy HOMOs and higher r e a c t i v i t i e s .  Figure 7 
displays t h e  values of ionizat ion poten t ia l s ,  measured by photoionization mas6 
spectrometry. a s  reported by Franklin. g. (12) f o r  a v a r i e t y  of one- and 
two-ring PAC. Figures 7a. b. and e show t h a t  t h e  r e a c t i v i t y  of an aromatic spec ies  
i s  increased by an increase i n  e i t h e r  t h e  number of a lkyl  s u b s t i t u t e n t s  or t h e  
number of carbons within an a lkyl  subs t i tuent .  Figure 7c reveals  t h e  s t rongly  
ac t iva t ing  e f f e c t  ( r e l a t i v e  t o  benzene) of an amino N at tached d i r e c t l y  t o  the  aro-  
matic ring. Figure 7d shows the a c t i v s t i n g  e f f e c t  of e t h e r i c  o r  hydroxyl groups 
and the s l i g h t l y  deact ivat ing e f fec t  of the carbonyl group. Thus PAC r e a c t i v i t y .  
as  inferred from ionizat ion poten t ia l s ,  follows the  order: 

with what might be predicted from f r o n t i e r  o r b i t a l  theory. 

aromatic amines > aromatic e t h e r s  mult ia lkylated PAC ='phenols  > 
monoalkylated PAC > unsubst i tuted PAC 2 carbonyl-substituted PAC, 

consis tent  with our experimental observations. 

The above order  helps  t o  explain t h e  behavior of the  S curve i n  Figure 5. I n  
Regime 1. the  subs t i tu ted  PAC are  composed of a s igni f icant  port ion of very reac-  
t i v e  compounds with hydroxyl and/or NH. e ther ic ,  and a l k y l  funct ional  groups. The 
S curve f a l l s  s teeply as  these very reac t ive  subs t i tu ted  PAC disappear. By the  end 
of Regime 1. t h e  t o t a l  mass of subs t i tu ted  species--especially t h a t  of t h e  most 
reac t ive  ones--is severely reduced. The s lope of t h e  S curve thus becomes less 
steep. 

In te rpre ta t ion  of the U curve i n  Figure 5 i s  less clear-cut .  I n  addi t ion  t o  
the  values i n  Figure 7. Franklin. 1. (12) provide ionizat ion p o t e n t i a l s  f o r  
some PAC of 2 two r ings (e.&.. anthracene, 7.55 eV; benzo[clphenanthrene. 8.12 e V ;  
and acenaphthylene. 8.73 eV). which ind ica te  a var ia t ion  i n  r e a c t i v i t y  among t h e  
unsubst i tuted PAC a s  w e l l .  of 
the  U curve. 

Two a l t e r n a t i v e s  emerge t o  account f o r  t h e  behavior 

Alternat ive 1 holds t h a t  there  i s  a s igni f icant  difference between t h e  reac- 
t i v i t i e s  of the  unsubst i tuted PAC and t h e  subs t i tu ted  PAC with the  more a c t i v a t i n g  
funct ional  groups (amino. hydroxyl, e ther ,  mult ia lkyl)  . While these highly reac- 
t i v e  subs t i tu ted  PAC are present  (Regime 1). soot  formation i s  dminated  by t h e  
conversion of these  species .  There may be conversion react ions within the  unsub- 
s t i t u t e d  PAC c l a s s  t o  accomodate differences i n  individual  species '  r e a c t i v i t i e s .  
but there  is negl ig ib le  t r a n s f e r  i n t o  t h e  c l a s s  from conversion of subs t i tu ted  PAC 
o r  out of the  c l a s s  from conversion of unsubst i tuted PAC t o  soot  i n  Regime 1. A t  
the  end of Regime 1. however. the  remaining subs t i tu ted  species  a r e  much less reac- 
t i v e  than those i n i t i a l l y  present ,  and t h e r e  is no longer a la rge  d i s p a r i t y  between 
the  r e a c t i v i t i e s  of t h e  subs t i tu ted  and unsubst i tuted PAC. The unsubst i tuted PAC 
begin t o  convert t o  soot  too,  and the  U curve decl ines  i n  Regime 2. 
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Alternat ive 2 suggests  t h a t ,  although the  subs t i tu ted  PAC a r e  more reac t ive  a s  
a c l a s s  than t h e  unsubst i tuted PAC, there  a r e  cer ta in  unsubst i tuted PAC with reac- 
t i v i t i e s  comparable t o  those of the more reac t ive  substi.tuted PAC. These more 
reac t ive  unsubat i tuted PAC convert t o  soot  i n  Regime 1. where t h e i r  loss is o f f s e t  
by a gain i n  unsubat i tuted PAC produced by react ions of subs t i tu ted  PAC. As pyro- 
l y t i c  condi t ions become more severe (Regime 2). conversion of unsubst i tuted PAC t o  
soot preva i l s  Over production of unsubstituted PAC. The balance i s  upset. and t h e  
U curve dec l ines .  

The two Al te rna t ives  represent f a i r l y  extreme cases .  It  i s  c e r t a i n l y  l i k e l y  
t h a t  the  t r u e  i n t e r p r e t a t i o n  l i e s  somewhere between these  extremes. but  our data 
do not permit us t o  be any more exact a t  t h i s  time. 

The three  pronounced peaks between 700 and 900 cm-' i n  the  spectra  of Figure 6 
a r i s e  from aromatic C-H out-of-plane deformation. The p o f i t i o n  of each peak 
denotes the  pumber of adjacent  r ing hydrogen atoms' 830-900 cm , one lone H atom; 
800-860 cm- , two adjacent  H atoms; 735-820 cm-'. th ree  t o  f i v e  adjacent  H atoms 
(40.48). f o r  
t h e  six samples analyzed. Although s e l e c t i v e  removal of PAC with subs t i tuents  a t  
c e r t a i n  pos i t ions  would have some influence on t h e  d i s t r i b u t i o n  of aromatic H 
atoms. one might expect t h e  overal l  loss  of subs t i tu ted  PAC t o  cause a general 
s h i f t  toward a higher  number of adjacent H atoms. Figure 8 displays a s l i g h t  
decrease i n  t h e  f r a c t i o n  of lone H--more pronounced i n  Regime 1 (8.7,Y,4.5)--that 
could be considered cons is ten t  with t h e  l o s s  of subs t i tu ted  PAC. L e s s ' q n a b l e  t o  
explanation, however: is the  increase i n  two adjacent  H a t  the  expense of  the  t h r e e  
adjacent H i n  Regime 2 (Y<4.5)--a sign. perhaps. t h a t  o ther  fac tors  a r e  a l s o  a t  
work. e.&.. des t ruc t ion  of heterocycl ic  s t ruc tures  and r ing  build-up processes t h a t  
can form PAC of l a r g e r  r ing  number and a higher  degree of peri-condensation. 
Figure 8 al lows no conclusions t o  be drawn about t h e  r e l a t i v e  r e a c t i v i t i e s  of d i f -  
fe ren t  pos i t iona l  isomers of subs t i tu ted  PAC. 

Figure 8 por t rays  t h e  var ia t ion  i n  d i s t r i b u t i o n  of aromatic hydrogen 

EXTENSION: IMPLICATIONS FOR SOOT FORMATION 

The conversion of PAC t o  soot  can be approximated by the  following scheme: 

Sub. PAC A U n s u b .  PAC 

where t h e  t h r e e  reac t ions  a re  depicted as i r r e v e r s i b l e  s ince  our experiments never  
show a ne t  production of subs t i tu ted  PAC or  a n e t  des t ruc t ion  of aoot. Although 
many uncer ta in t ies  remain about the r e l a t i v e  dominance of the  three  react ions.  t h e  
data  imply t h e  following about t h i s  network: 

1) I n  both Regimes. at l e a s t  one of e i t h e r  RZ or R1-R3 must occur. 

2)  R3 must occur i n  Regime 2. 

3) I f  soot forms v i a  the combination Rl-R3 .  then R 1  = R3 i n  Regime 

It occurs in  Regime 1 only i f  R1 = R3.  

1 and 
R1 5 R 3  i n  Regime 2. 

4) I f  soot cannot form v i a  the  combination Rl-R3. then R2 must occur 
throughout Regimes 1 and 2; and R 3  must occur only i n  Regime 2. 
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It would appear t h a t  i f  conversion of subs t i tu ted  PAC t o  soot  does f i r s t  
e n t a i l  conversion t o  unsubst i tuted PAC, then it does not merely involve removal of 
the  subst i tuent  group: L e w i s  and Edstrom (38) report  7.12-dimethylbenz[al-anthra- 
cene t o  form s igni f icant ly  more soot  than benz[alanthracene. Davis and Scul ly  (10) 
and Glassman (16) report  t h e  alkylated naphthalenes and benzenes t o  have higher  
sooting tendencies than t h e i r  unalkylated homologs. If benzene, naphthalene. and 
benzIalanthracene a r e  lesh l i k e l y  t o  form soot  than t h e i r  a lkylated der ivat ives .  
then it is unl ikely t h a t  conversion of an a lkyla ted  PAC t o  soot  proceeds v i a  the 
removal of t h e  a lkyl  group t o  form the unalkylated homolog. 

I f .  as  asser ted  by o thers  (20.24,37). the  conversion of PAC t o  soot  involves 
the  formation of a reac t ive  f r e e  rad ica l ,  then PAC r e a c t i v i t y  should c o r r e l a t e  with 
the ease of rad ica l  formation. The formation of a u-type rad ica l  (e.!.. phenyl, 
naphthyl) by abs t rac t ion  of a ring-attached H atom or methyl group requi res  approx- 
imately 100 kcal/mole (37)--a high bond d issoc ia t ion  energy due t o  the  l o c a l i z a t i o n  
of the resu l t ing  f r e e  electron.  To form n-type rad ica ls  like benzyl. however, 
requires  only about 77 kcalfmole because t h e  resu l t ing  unpaired electron i s  reso- 
nance-stabilized (37). Alkyl-substituted PAC would then be expected t o  be more 
react ive than unalkylated PAC. 

Subst i tuted PAC with hydroxyl groups can evident ly  form rad ica ls  even more 
eas i ly .  Gavalas (15) repor t s  t h e  profound ac t iva t ing  e f fec t  of a hydroxyl group 
substitut>ed i n  the ortho or para posi t ion of an aromatic un i t  (Ar) l inked by a 
methylene bridge. Because of keto-enol tautomerism. d issoc ia t ions  of t h e  type 

HO-Ar-CHZ-X HO-Ar-CH2' + X'  (X = H. CH3. Ar. CH2-Ar) 

a r e  very highly energe t ica l ly  favored over t h e  type 

Ar-CH2-X Ar-CH2' + X'. 

Activation energies  f o r  the  dissociat ion of a r y l  and a r y l j a l k y l  e thers  l i e  i n  t h e  
same range as those of aromatics with a lkyl  subs t i tuents  or methylene bridges (15). 
Thus our experimentally observed order of deplet ion of PAC p a r a l l e l s  tha t  suggested 
by ease of rad ica l  formation: hydroxyl-substituted PAC > alkyl-  and ether- subs t i -  
tuted PAC > unsubst i tuted PAC. 

CONCLUSIONS 

1. A s  observed i n  previous s tud ies  i n  our laboratory (42). there  is  a constancy of 
summed PAC and soot  y ie lds  t h a t  ind ica tes  a conversion of PAC t o  soot .  

The a b i l i t y  t o  separate  subs t i tu ted  PAC from unsubst i tuted PAC reveals  d i f fe rences  
i n  t h e i r  pyrolysis  behaviors: A t  low temperatures (I 1312 K a t  6 in )  or shor t  
times (drop dis tances  5 4 i n  a t  1375 K), y i e l d s  of subs t i tu ted  PAC f a l l  markedly 
with an increase i n  e i t h e r  temperature or  t i m e ;  y i e l d s  of unsubst i tuted PAC remain 

! constant. Both c lasses  of PAC reac t  away, however, st higher  temperatures or 
longer times. 

2 .  

I 

). 
3. P lo t t ing  subs t i tu ted  and unsubst i tuted PAC yie lds  versus  t o t a l  PAC y ie ld  Y recon- 

c i l e s  d a t a  taken a t  constant dis tance and var iab le  temperature with those taken a t  
constant temperature and var iab le  distance. Because subs t i tu ted  and unsubst i tuted 
PAC yie lda  prove t o  be so le ly  functions of Y. Y apt ly  serves  as  a s ing le  parameter 
f o r  pyrolysis  sever i ty  s ince it accounts f o r  v a r i a t i o n s  i n  composition due t o  
e i ther  temperature or time. 
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For the bituminous c o a l  invest igated.  the y i e l d s  of subs t i tu ted  and unsubst i tuted 
PAC suggest two PAC conversion regimes. Although r e a c t i v i t i e s  may vary from spe-  
c i e s  t o  species  wi th in  a c lass .  a t  low PAC conversions. subs t i tu ted  PAC as  a c l a s s  
c lear ly  display a much higher  decay than the  unsubst i tuted PAC: Subst i tuted PAC 
y ie lds  f a l l  by a f a c t o r  of -3.5: whereas the  unsubst i tuted PAC show no n e t  change. 
Though s t i l l  evident a t  high PAC conversion, d i f fe rences  i n  the  two c lasses '  decays 
a r e  much less pronounced. those 
of the  subs t i tu ted  PAC, but  both c lasses  undergo s i g n i f i c a n t  conversion t o  soot .  

Conversion of PAC corresponds t o  d i f fe rences  i n  the  kinds of funct ional  groups 
present. A t  h igh values  of Y. FP-IR shows t h a t  there  a r e  s i g n i f i c a n t  amounts of  
PAC with a l k y l ,  e t h e r ,  carbonyl, and hydroxyl and/or amino groups. Further  pyrol- 
y s i s .  however. e f f e c t s  s e l e c t i v e  removal of the hydroxyl- and/or amino-substituted 
PAC. A s  t h e  unsubst i tuted PAC become more prevalent ,  r e l a t i v e  contr ibut ions from 
a l k y l  and e t h e r  f u n c t i o n a l i t i e s  go down and carbonyl subs t i tu t ion  becomes s l i g h t l y  
more s igni f icant  . 
Wirhout specifying t h e  kind of react ion mechanism, w e  can apply f r o n t i e r  o r b i t a l  
theory t o  PAC conversion react ions.  This theory, along with values  of ion iza t ion  
poten t ia l s  found i n  t h e  l i t e r a t u r e  (12). suggests t h a t  PAC r e a c t i v i t y  follows t h e  
order: 

Unsubstituted PAC yie lds  remain appreciably above 

aromatic amines aromatic e thers  2' mult ia lkylated PAC 2' phenols > 
monoalkylated PAC > unsubst i tuted PAC 2 carbonyl-substituted PAC. 

which is  cons is ten t  with our experimental r e s u l t s .  

I f  w e  restrict t h e  PAC conversion react ions t o  involve f r e e  rad ica l  formation, then 
we  again see agreement between theory end experiment. Less energy is  needed t o  
form f ree  rad ica ls  from PAC with hydroxyl. a lkyl ,  and e t h e r  subs t i tuents  than from 
unsubst i tuted PAC. 
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